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Abstract 

A supermanifold M is canonically associated to any pseudo-Riemannian spin manifold (Ma, go). 
Extending the metric go to a field g of bilinear forms g(p) on TpM, p E MO, the pseudo-Riemannian 
supergeometry of (M, g) is formulated as G-structure on M, where G is a supergroup with even part 
Go 2 Spin(k, 1); (k, I) the signature of (Mu, go). Killing vector fields on (M, g) are, by definition, 
infinitesimal automorphisms of this G-structure. For every spinor fields there exists a corresponding 
odd vector field X,s on M. Our main result is that X,s is a Killing vector field on (M, g) if and only 
ifs is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field X,. 
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1. Introduction to supergeometry 

First we introduce the supergeometric language which is needed to formulate the main 
result of the paper. Standard references on supergeometry are [M,L,K]. 
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I. 1. Supermanifold 

We consider pairs (Mu. A), where A40 is a Coo- manifold and A = do + Al is a sheaf 
of &graded R-algebras; dim Mu = m. 

Example 1. We denote by C’$” the sheaf of (smooth) functions of Mu. It associates to an 
open set U c MO the algebra CEO(U) = C”(U) of smooth functions on U. Let E be a 
(smooth) vector bundle over Mu and E the corresponding locally free sheaf of CEO-modules: 
I associates to an open set U c Mu the C”(U)-module E(U) = T(U. E) of sections of 
E over CT. Conversely, any locally free sheaf f of CzO -modules defines a vector bundle 

E + MO. The exterior sheaf A& = ACHE + A OddE is a sheaf of Z2-graded R-algebras on 

MO. 

Definition 1. The pair M = (MO. A) is called a (differentiable) supermanifold of dimen- 
sion mJn over MO if for all p E MO there exists an open neighborhood U 3 p and a rank 
n free sheaf & of CF-modules over U such that Ajrl G AE~ (as sheaves of Z2-graded 
R-algebras). The (local) sections of A are called (local) functions on M. 

From Definition 1 it follows that there exists a canonical epimorphism t : A + CEO, 
which is called the evalclation mup. Its kernel is the ideal ,J7 generated by A1 : ker c = J = 
(Al) = A1 + A:. By the construction of Example 1 to any vector bundle E + MO we 
have associated a supermanifold M(E) = (MO, A = 4). In this case the exact sequence 

of sheafs of Bz-graded R-algebras has a canonical splitting CEO L-$ A& = C& + (E). 

Let (xl,..., x”) be local coordinates for MO defined on an open set U c MO such 
that Ajci 2 r\&u, where & is a rank II free sheaf of Cp-modules, cf. Definition 1. Let 
81, . , O,, be sections of &u trivializing the vector bundle Eu associated to the sheaf &. 
Note that x1, . . , xm ,@I, . , Q,, can be considered as local functions on the supermanifold 
M. Moreover, any local function f‘ E A(U) is of the form 

,f = c f&‘, . . , _P)P, f&x’, ,Xn’) E C”(U) = cgp,, (1) 
lYEL; 

where 8” := 0:’ A . . A Q,:“, a = (al, . . , a!,,). 

Definition 2. The tuple (xi, Oj) = (x’, . , xm, 81, . . , Cl,) is called a local coordinate 
system for M over U. 

The evaluation map applied to a (local) function ,f = .f(_r’. . . . , x”, 81, . . , &) with 
expansion (1 j is given by 

c(.j) = .f(x’, . . 1 XV’, 0,. . . .O) = f@ .._., 0,(x’, . . P). 

Let M = (MO, A) and N = (NO, a) be supermanifolds. 
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Definition 3. A morphism @ : M -+ N is a pair 0 = (q, @), where cp : MO + NO is a 
differentiable map and C$ : I? --f q*A is a morphism of sheaves of Z2-graded R-algebras. @ 
is called an isomorphism if cp is a diffeomorphism and 4 is an isomorphism. An isomorphism 
CP : M + M is called automorphism of M. 

In local coordinate systems (x’, qj) for M and (.?. 4) for N a morphism 0 is ex- 
pressed by p even functions Zk (x’ , , . , x" ,OI, . . , O,,,), k = 1, . . . , p, andq odd functions 
8,(x1 ,..., .P.& ,..., H,),l= l,..., q;where(p,q)=dimN. 

1.2. Tangent vector/vector3eld 

Let M = (MO, A) be a supermanifold. For any point p E MO the evaluation map 
6 : ..A + CEO induces an epimorphism cp : A, + R, ??p(f) := t(,f’)(p), where A, 
denotes the stalk of A at p. For cz E 272 = (0. 1) we define 

(T,M), := (u : A,, -+ R, R-linear I u(fg) = u(f)tp(g) + (-lY~i~p(.f)Q)l, 

where the equation is required for all ,f, g E Ap of pure degree and .f E (0, 1) denotes the 
degree of f. 

Definition 4. The tangent space of M at p E MO is the Hz-graded vector space T,M = 
(T,M)o + ( TpM) 1. The elements of T,M are called tangent vectors. Any morphism @ = 
(~~4) : M = (Mo,A) + N = (No,B) induceslinearmaps d@(p) : TpM + T,(,,N, 
defined by (d@(p)v)(f) := u($,(.f)), p E MO, u E T,M, .f’ E .13,(,), where & : 

B3rp(p) -+ A,, is the morphism of stalks associated to 4 : B + +4. The map d4(p) is 
called the difSerentia1 at p of @. 

The sheaf Der A of derivations of A over R is a sheaf of &-graded A-modules: Der A = 
(Der Ajo + (Der A) I, where 

(DerA), = (X : A -+ A, R-linear1 X(fg) = X(f’)g + (-l)“fj’X(g)l. 

where the equation is required for all f, g E A of pure degree. 

Definition 5. The sheaf 7,~ = Derd is called the tangent sheaf of M = (MO. A). The 
sections of ‘&I are called vectorjelds. 

Any local coordinate system (x’, Qj) over U gives rise to even vector fields a/ax-’ and 
odd vector fields a/W, over U. The action of the vector fields a/ax’, a/aOj on a function 
.f with expansion (1) is given by 

g =c~j(-l))‘y’+...+~I~Ifil(xI) . . . . .~)O~’ * . . . AHp’-’ A . A\fH. 

J a 



40 D.V Alekseevsky et al./Journal of Geometry and Physics 26 (1998) 37-50 

Any vector field X on M over U can be written as 

where X’, Yj E A(U). 
If @ = (q, 4) : M = (MO, A) + N = (No, B) is an isomorphism then cp-’ and 4-l : 

cp*A + B exist and give rise to an isomorphism A -+ cp;’ t3. The induced isomorphism 
between the corresponding sheaves of derivations is denoted by 

-I d@ : ,&. --, ‘p.+ IN 

and is called the diflerential of @. For any open U c MO the differential d@ is expressed by 
an A(U)-linear map d@r/ : TM(U) + 7.~(cp(U)), where the action of A(U) on l~((p(U)) 
is defined using the isomorphism A(U) 7 B(rp( U)) induced by 4-l. 

Let X be a vector field defined on some open set U c MO and p E U. Then we can 
define the value X(p) E TP M of X at p, 

x(p)(f) := tp(X(f)), f E A,. 

However, unless dim M = m In = m 10, a vector field is not determined by its values. 
Finally, we relate the tangent spaces and tangent sheaves of M and MO. Any even tangent 

vector u E (T,M)o annihilates the ideal 3 = ker E in the exact sequence 

O+J-iA%!~O-tO (2) 

and hence defines a tangent vector to MO. More explicitly, we define a map ??: T,M + 
TP MO by the equation 

c(u)(c(f)) = uo(f), 

where u = vn + vt E ( TP M)o + (T,, M) 1, f E A,, and f ++ c(f) is the evaluation map of 
stalks E : A, + (CEJ),. 

Proposition 1. There is a canonical exact sequence of &-graded vector spaces 

0 -+ (TpM)l + T,M -r, TPMo + 0. 

In particular, E induces a canonical isomorphism (TP M)o 1 TP MO. 

Similarly, on the level of tangent sheaves we define t : TM -+ &, by the equation 

E(X)(C(f)) = E(XO(f))? 

where X = X0 + XI E (7~(U))o + (‘&(U))l, f E A(U) and U c MO open. 

Proposition 2. There is a canonical exact sequence of sheaves of A-modules 

0+kert+7M:7MO+0, (3) 
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where ker E = (7~) 1 + JTM. In particular there is the following exact sequence of A- 
modules: 

1.3. Frame/frame$eld/local coordinates 

Definition 6. Let V = Vo + VI be a i&-graded vector space of rank m In, i.e. dim Vo = m 
and dim VI = n. A basis of V is a tuple (bl, . . . , b,+n) such that (bl, . . . , b,) is a basis 

of VO and (b,+l, . . , b,+, ) is a basis of VI. Let M = (Ma, A) be a supermanifold and 
p E MO. A frame at p is a basis of T,M. A tuple (Xl, . . . , Xm+n) of vector fields defined 
on an open subset U c MO is called a frameheld if (Xl (p), . . . , Xm+n (p)) is a frame at 
all points p E U. We denote by 3(U) the set of all frame fields over U. The sheaf of sets 
U H F(U) is called the sheaf offramejelds. 

Any local coordinate system (x’, Qj) over U gives rise to the frame field (a/ax’, i3/Mj) 
over U. 

1.4. Supergroup 

Let A = A0 + A1 be an associative Z2-graded-!-algebra with unit. We will always 
assume that A is supercommutative, i.e. ab = (-l)Obba for all a, b E A0 UAt Under this 
assumption any left-A-module carries a canonical right-A-module structure and vice versa; 
so we will simply speak of A-modules. For any supermanifold M = (MO, A) the algebra 
of functions d(Mo) is supercommutative, associative and has a unit. 

For any set .E and non-negative integers r, s we denote by Mat(r, s, 27) the set of r x s- 
matrices with entries in .E and put Mat(r, C) := Mat (r, r, Z). Any partition (r = m + 
n, s = k + I) defines a Z2-grading on the A-module V = Mat(r, s,A): 

b=((Z :)I A E Mat (m, k,Ao), D E Mat(n, l,Ao), 

B E Mat(m, l,Al), C E Mat(n, k,Al) , 
I 

K=((;l :)I A E Mat(m, k,Al), D E Mat(n, l,Al), 

B E Mat(m, l,Ao), C E Mat(n, k,Ao) . 
1 

The &-graded A-module V = VO + VI is denoted by Mat(mIn, kJ1, A). Matrix multipli- 
cation turns Mat(mln,A) := Mat(mJn, mln,A) into an associative &-graded algebra with 
unit. 



42 D. L! Alekseevsky et al. /Journal of Geometry and Physics 26 (1998) 37-50 

Definition 7. A super Lie bracket on a ;22-graded vector space V = Vo + VI is a bilinear 
map [., .I : V x V + V such that for all x, y, z E VO U VI we have: 

(i) [xX31 = X + $, 
(ii) [x, y] = -(-l)“-i’[y, x] and 

(iii) [x3 [Y, zll = I[x, ~1, zl + (-lP[y, [x, zll. 
The pair (V, [., .I) is called a super Lie algebra. 

The supercommutator 

[X, Y] = XY - (-l)lrYX, X, Y E Mat(mln,A)o U Mat(mln,A)l, 

defines a super Lie bracket on the Z2-graded vector space Mat(mln, A). The super Lie 
algebra (Mat(mJn,A), [., .I) is denoted by gl,ln(A). We put 

CL+(A) := (g E Mat(m(n,A)olg is invertible]. 

Similarly, if V is a i&-graded A-module EndA (V) carries a canonical super Lie algebra 
structure, which is denoted by glA(V). By definition GLA(V) is the group of invertible 
elements of EndA( Finally, we will use the convention (11,1,~ := CJ~,+([W), g1(V) := 
glR(V), CL(V) := GLR(V). 

Definition 8. A supergroup G is a contravariant functor M H G(M) from the category 
of supermanifolds into the category of groups. Let H, G be supergroups. We say that 
H is a super subgroup of G and write H c G if H(M) c G(M) is a subgroup and 
H(O) = G(@)IH(N) for all supermanifolds M, N and morphisms @ : M --f N. 

Example 2. The general linear supergroup GL,ln is the supergroup M + GL,in(M) 
obtained as composition of the following two functors: 

(9 

(ii) 

the contravariant functor M = (MO, A) + d(Mo) from the category of supermani- 
folds into that of asssociative, supercommutative algebras with unit, 
the covariant functor A + G L,l,, (A) from the category of associative, supercommu- 
tative algebras with unit into that of groups. 

Definition 9. A linear super Lie algebra g is a super Lie subalgebra CJ c gL,ln (for some 
m In). A linear supergroup is a super subgroup G C G L,,ln (for some m In). 

Example 3. Let (1 c &I, be a linear super Lie algebra. For any associative, supercom- 
mutative algebra with unit A we can consider the super Lie algebra n ~3 A c gl,,,, (A). Its 
even part g(A) := (g @ A)0 is a Lie algebra. If A = d(Mo) is the algebra of functions of a 
supermanifold M = (MO, A) then it is easy to see that the exponential series 

X E Mat(mln,A>. 
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converges (locally uniformly) to an element exp X E GL,~,(A). Now let G(A) be the sub- 
group of GL,+(A) generated by expR(A). Then the functor M = (Mu, A) H G(M) := 
G(d(Mo)) is a linear supergroup, which we denote by exp (1. 

1.5. G-structure 

Let M = (Mu, A) be a supermanifold of dim A4 = m(y1. For any open subset U c Ma 
we consider the supermanifold MJ, := (U, dlu). The general linear supergroup CL,,,, 
induces a sheaf BLM of groups over Mu: GLM(CI) := GL,,ln(MIU) = GL,+(d(U)), 
U C MO open. The group ~CM (U) acts naturally (from the right) on the set F’(U) of frame 
fields over I/. This action turns 3 into a sheaf of GCM-sets. Now let G c CL,+ be a 
linear supergroup and G the corresponding sheaf of groups, i.e. 4(U) = G(MJU) for all 
open U c MO. Since G is a sheaf of subgroups $? c GCM the sheaf F of frame fields of M 
is, in particular, a sheaf of G-sets. 

Definition 10. Let A4 = (MO, A), dim M = mln, be a supermanifold and G c GL,ln a 
linear supergroup. A G-structure on M is a sheaf FG of G-subsets FG c F such that for all 
p E MO there exists an open neighborhood U 3 p for which g(U) acts simply transitively 
on 3c(U). 

Example 4. For any supermanifold M, dim M = m/n, the sheaf of frame fields 3 is a 
GL mln-structure. 

1.6. Automorphism qf G-structure 

We denote by Aut(M) the group of all automorphisms of the supermanifold M, see 
Definition 3. The differential d@ : 7~ + cp,‘lj of any @ = (cp. 4) E Aut(M) induces 
an isomorphism F + q0,‘_7=, again denoted by d@. Now let FG c F be a G-structure on 
M, for some linear supergroup G c GL,,,,, . For simplicity we can assume that G = exp r~ 
as in Example 3. 

Definition 11. @ = (cp, q5) E Aut(M) is called an automorphism of the G-structure _7=o if 
d@FG c qq’_Q. 

We recall that any p E Mu has an open neighborhood U such that G(U) acts simply 
transitively on 3c(U). Such open sets U c MO will be called small. If U c MO is small 
then 3~ (U) = EG(U) for any frame held E E 3~ (U). Here the right-action of the group 
G(U) on 3~(u) is simply denoted by juxtaposition. 

Proposition 3. @ E Aut(A4) is an automorphism of the G-structure 3~ if 

d@c/~El,~ E El,Cci~,S(~(U’)) 

for all small U c MO, E E 3c(U) and open U’ c U such that cp(U’) c U. 
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For any open set V c MO the vector space ~M(V)~+~ of (m + n)-tuples of vector 
fields is naturally a right-module of the associative, Zz-graded algebra Mat(m In, d(V)) In 
particular, itisaright-moduleofthe superLiealgebrag@d(V) c amln(d(V)). On theother 
hand, IM(V) (and hence ‘T,M(V)“+“> IS naturally a left-module for the super Lie algebra 
‘T”(V) of local vector fields. The action on 7~ (V] 1s given by the adjoint representation, 
i.e. by the supercommutator adxY = X o Y - (- l)“Y o X, X, Y E IM(V) of pure degree. 
The corresponding action on 7~ ( IV)~+” is denoted by LX (“Lie derivative”): 

LxE:=([X,XII,...,~X,X,+,I), E=(x~,...,xrn+n>~I~(V)~+~. 

Proposition 3 motivates the following definition 

Definition 12. A vector field X on M is an injnitesimal automorphism of the G-structure 
3~ if 

Lx\$ E E(R @ d(V)) 

for all small V C MO, E E 3C(V). 

2. Supergeometry associated to the spinor bundle 

2.1. The supermanifold M(S) 

Let (MO, go) be a (smooth) pseudo-Riemannian spinmanifold with spinor bundle S + 
MO. The corresponding locally free sheaf of CFO -modules will be denoted by S; S(V) = 
T(V, S), V c MO open. To the vector bundle S + MO we associate the supermanifold 
M : M(S) = (MO, d = AS). 

Consider the &-graded vector bundle TM0 + S* + MO with even part TM0 and odd 
part S*. 

Proposition 4. For any p E MO there is a canonical isomorphism of &-graded vector 
spaces lP : TPMo + S; 1 TPM. 

ProojI We define tp’ I( TP M)o := E I( TP M)o, see Proposition 1. Now it is sufficient to con- 

struct a canonical isomorphism S* 1 (Tp M) 1. For any section s E T(V, S*) interior mul- 
tiplication 1 (s) by s defines an odd derivation of the &graded algebra d(U) = r( V, AS), 
i.e. a vector field X, := L(S) E 7~(V)i. The value X,(p) E (TpM)l depends only on 
s(p) E Si and we can define lP(s(p)) := X,(p). 0 

Using the embedding CgO L, AS, we can consider 7~ as a sheaf of CEO-modules. 
Interior multiplication s H L(S) = X, defines a monomorphism S* c-, (7~)i of sheaves 
of czO -modules. We want to extend this map to 1 : 7~~ + S” + 7~. For a local vector 
field X E 7M,,(V) on MO we put 

l(X) := vx E I~(V>O, 
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where V is the canonical connection on AS, i.e. the one induced by the Levi-Civita con- 
nection on (Mu, go). 

Proposition 5. The map 1 : TM0 + S* -+ 7~ is a monomorphism of sheaves of Zz-graded 
CEO-modules. Moreovel; 117Mo dejines a splitting of the sequence (3), i.e. E o 117,~~ = id. 

Note that given any vector bundle E and connection D on E we can canonically define 
~E,D : TM,, + &* L, TM, where A4 = M(E) and E is the sheaf of local sections of E. In 
Proposition 5 we have 1 = 1s.~. 

2.2, The coadjoint representation of the Poincare’ super Lie algebras 

Let ( VO, (., .)) be a pseudo-Euclidean vector space of signature (k, I), k + 1 = m, and VI 
the spinor module of the group Spin(Vn), n := dim VI. Put V := Vo + VI. The vector space 
p(V) := gpin(Vu) + V carries the structure of 6pin(Vu)-module. We want to extend this 
structure to a super Lie bracket [. , .] on p(V) which satisfies [ VO, V] = 0 and [VI , VI ] c VO. 
Such an extension is precisely given by a Spin( Vu)-equivariant map rr : v2 VI + VO; here 
v2 denotes the symmetric square. 

Definition 13. The structure of super Lie algebra defined on p(V) by the map rr is called 
a Poincare’ super Lie algebra. 

We denote by p : Vo + End(V1) the (standard) Clifford multiplication. 

Definition 14. A bilinear form #I on the spinor module is called admissible if: 
(1) /I is symmetric or skew symmetric. We define the symmetry o of /I to be o (fi) = + 1 

in the first case and ~7 (p) = - 1 in the second. 
(2) Clifford multiplication p(v), u E Vi, is either symmetric or skew symmetric. Accord- 

ingly, we define the type r of B to be t(B) = f 1. 
An admissible form /I is called suitable if a(p)s(B) = +l. 

Given a suitable bilinear form /I on V1 we define n = n,,~ : v2Vl -+ VO by 

(n(s1 v s2), u) = B(P(~)Sl~ s2), SI?S2 E VI, u E vo. (4) 

The map rr is Spin(Vo)-equivariant. Hence it defines on the vector space p(V) the structure 
of Poincare super Lie algebra. The following theorem was proved in [AC]: 

Theorem 1. Any Spin( Vo)-equivariant map v2 VI + Vo is a linear combination of maps 
np,b,, /Ii suitable. 

All admissible bilinear forms on the spinor module were explicitly determined in [AC]. 
The spinor module carries a non-degenerate suitable bilinear form /I for all values of m = 
k +I and s = k - 1 except for (m, s) = (5,7), (6,0), (6,6) and (7,7) (mod 8, mod 8). Now 
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we assume that a non-degenerate suitable bilinear form B on VI is given. The map n = n,,~ 
defines on P(V) the structure of PoincarC super Lie algebra such that [VI, VI] = VO. 

Given a super Lie algebra ~1 the coadjoint representution ad* : g + gl(g*), x H ad:, is 
defined by the equation 

ad:(y*) = -(-l)“py* o ad,, 

for x E (1 and I’* E r~* of pure degree. 

Proposition 6. The coadjoint representation of p(V) preserves the subspace V’ = {x” E 
p(V)*lx*(V) = 0} c p(V)* and hence induces a representation (;Y : p(V) -+ gl(V*) on 
V* 2 p(V)*/ VI. It has kernel ker (Y = VO and therefore induces a faithful representation 
of the super Lie algebra p(V)/ Vo on V*. 

Oncewechooseabasisb=(bl,...,b,+,)ofV*, we can identify cr(p(V)) c gr(V*) 
with a subalgebra a(~(v))~ c &in, where A H Ab denotes the isomorphism gI(V*) + 
&in defined by b. If moreover (bl , . . , b,) is an orthonotmal basis of VI1 2: Vi then the 
even part ol(p(V))k ?S gPin(k, r) is a canonically embedded spinor Lie algebra, i.e. 

u(P(V))i=3&:={(: DFA)) lAt;o(k.l)igl,,). 

where 0 : ao(k, 1) + gl, is equivalent to the spinor representation. 
The linear group Spin, c GL,I~([W) generated by the Lie algebra gpin, c (gL,~,~)o 2 

& $ gL, acts on the set of bases of V* from the right. 

Proposition 7. Assume that cr(p(V))i = <p’ ~1, and b’ = bg for some g E Spin,. Then 

4P(V))b = 4P(V))b’. 

Proof This follows from the fact that ~(p(V))k = gpin, and cr(p(V))y = cx(V~)~ are 
invariant under spin, = a(6Pin(Vo))b. 0 

Now let (el, . , e,,) be an orthonormal basis of Vo and (6’, . . , P) a basis of VI. The 
dual bases of V$ and VT will be denoted by (e’) and (Qj). 

Proposition 8. With respect to the basis b = (e’, . . . , em, 01, . . (0,) of V* 2 V; + VT 
the super Lie algebra cx(p(V)) c gl(V*) is identified with 

4P(V))b= ((; JA)) ( A E go(k,l), Cii = e’(n(s v @)),s E V1 
I 

, 

where C = (Cj’), j = 1, . . . , n, i = 1, . . . , m, and D : go(k, 1) + gl, is equivalent to the 
spinor representation, 
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2.3. The (pseudo) Riemannian supergeometry associated to the spinor bundle 

Now we carry over the construction of Section 2.2 to the &-graded vector bundle V := 
TM0 + S over MO. We assume that MO is simply connected. The vector bundle V carries 
the canonical connection induced by the Levi-Civita connection of the pseudo-Riemannian 
manifold (MO, go). The holonomy algebra of V at p E MO is a subalgebra of apin(T,Mo) c 
nl(V,)o. This implies, in particular, that the bundle of Spin(TMo)-invariant bilinear forms 
on S is flat. Let gl be a parallel non-degenerate suitable bilinear form on S, see Definition 
14 and the remarks following Theorem 1. 

The Spin(TMo)-invariant bilinear form g = go + gl on V should be thought of as a 
pseudo-Riemannian metric for the supermanifold M = M(S). Note that, due to Proposi- 
tion 4, g(p) induces a non-degenerate bilinear form on TpM. However, recall that gl is 
symmetric or skew-symmetric. The map x = x~,~, : v2S + TM0 defines on p(V) = 
gpin(TMo) + S c nl(V) the structure of bundle of Poincark super Lie algebras. p(V) is 
a parallel bundle. Now let c~ : p(V) -+ ~l( V*) be the field of representations induced by 
the coadjoint representation, cf. Proposition 6. The image a(p(V)) c gl(V*) is a parallel 
bundle of super Lie algebras. 

Proposition 9. The,frame bundle of V* + M has a subbundle PSpin, with structure group 
Spin, c GL,ln([W), Spin, Z Spin(k, l), such thatfor all b = (e’, Oj) E (PSpin,)p: 
(1) (e’) is an orthonormal basis of Tp*Mo and 
(2) cr(p(Vp)) is identijied via b with the subalgebra n = ~(p(v,))~ c ~l,,~.([w), where 

and 

g1=((: i>! C = (Cj'), Cji = e’(r(s V Oj)), s E S, I 
are independent of b and p. Here (0j) is the basis of S, dual to (Oj). 

Pro05 This follows from the holonomy reduction and Propositions 7 and 8. 0 

We denote by V the sheaf of local sections of V. Identifying T MO and T* MO via go, the 
map t of Proposition 5 corresponds to a monomorphism 1 : V = I& + S* c-, 7~. This 
induces a map 

where F(U) is the set of frame fields of M over the open set U c MO. The image of L 
generates a Spin,-structure on M, where Spin, is now considered as (purely even) linear 
supergroup Spin, c GLmln. More precisely, recall that Spin, (A(U)) is the group generated 
by exp spin, (A(U)) c GL,+(A(U)). It acts on F(U) from the right. Put 

Fspin,(U) := l(r(u, &;,,))Spin,(A(U)). 
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Proposition 10. Fspin, is a Spin0 -structure on M. 

Denote by G the linear supergroup defined by the linear super Lie algebra g, see Exam- 
ple 3. Since qin, c g c gl,,ln (R), we have the following inclusions of linear supergroups: 

Spin, c G c G.&in. 

Put .TG(U) := Y-sni,,(U)G(d(U)) for all open U c MO. 

Proposition 11. 3~ is a G-structure on M. 

Definition 15. A Killing vector field on (M, g) is an infinitesimal automorphism of the 
G-structure 3G, see Definition 12. 

2.4. Twistor spinors as Killing vectorjelds 

Definition 16. A section s of the spinor bundle S + Mu is called a twistor spinor if there 
exists a section S of S such that 

vxs = p(X)? 

for all vector fields X on MO. Here p (X) : S -+ S is Clifford multiplication. A twistor 
spinor s is called a Killing spinor if S = ks for some constant h E R 

Remark. From (6) it follows that S = -( 1 /m)IIs, where D is the Dirac operator. 

The non-degenerate bilinear form gt on S induces the isomorphism 

sl s*, s H s* := gt(s, .). 

Recall that 1]S* : S” L-, 7~ is simply given by interior multiplication, Section 2.1. To any 
spinor field S we associate the odd vector field X, := l(s*) on M. Now we can state the 
main result of this paper. 

Theorem 2. Let (MO, go) be a pseudo-Riemannian spin manifold with spinor bundle 
(S, gl); g1 a parallel non-degenerate suitable bilinear form on S, see Definition 14 and 
Section 2.3. Consider the supermanifold M = M(S) with the bilinear form g = go + gl 
and let s be a section of S. The vectorjeld X, is a Killing vector$eld on (M, g) iff s is a 
twistor spinor, see Definitions 15 and 16. 

Corollary 1. A Killing vectorfield X, for an extension g of go is a Killing vectorjeldfor 
any other extension; the extensions being as in Section 2.3. 

Lemma 1. For all sections s*, t* of S* and X of TM0 we have: 

(i) [t(s*), l(t*)l = 0, 
(ii) [l(s*), l(X)] = [l(s*), OX] = -1((0,)*). 
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Pro05 
(i) By definition of the supercommutator [., .] on 7~, we have [l(s*), r(t*)] = l(s*) o 

l(r*) + l(t*) 0 l(s*) = 0. 
(ii) Recall that s* = gt(s, .). If t is a section of S we have [I(s*), ~(x)](t) = s*(V~t) - 

Vxs*(t) = g10, Vxt) - VXSl(S, t) = -g1(Vxs, t) = -(Vxs)*(t). 
0 

Proposition 12. Let s be a twistor spinal: For all vectorfields X and spinorjields t on MO 
we have: 
(i) [l(s*), l(X)] = -~((p(x)S)*) = -t(gt)l(p(X)*s*), where t(gl) E {fl] is the type 

of gl, see Dejinition 14. 

(ii) ]I@*), ~(X>l(t> = -gl (p(X):, t) = -go(n(s v t), X). 

Proo$ The first equation of(i) follows from Lemma l(ii), since VXS = p(X)S. Now the 
second equation of(i) and the first equation of (ii) follow from the definition of the type t: 
(p(X)?)*(t) = gl(p(X)S, t) = t(gl)gl(s, p(X)t). The last equation of (ii) is simply the 
definition of rr = rrp,,, , cf. (4). 0 

Proof of Theorem 2. Let (e’, Oj) E f (U, PSpin,), (I c MO open, and (ei, t9j) the dual local 
frame for V = TM0 + S. Put 

E := (l(e’), l(Qj)) E T(U, Fspin,) C r(U, FG). 

Since (ei) is orthonormal, i.e. gu(ei, ej) = &iSij, ai E {fl], we have ei = Eigo(ei, .). 
Hence, by definition of 1 on IG0, we have l(e’) = Eil(ei). Therefore by Lemma 1 for any 
s E T(lJ, S) we have 

Lx,%E = (1X,, l(e’)l, LX,, l<Qj)l) = (-E~~((V~~S)*), 01, (7) 

(ve,d*@j> = g1 (Vqs, 0’). (8) 

From this computation it follows that LX, E E E((r ~3 d(U)) iff there exists a t E r(U, S) 
such that 

Lx.<E = EG, 

where 

(9) 

E B @d(u), CJ' = ei (n(t V Oj)), (10) 

see Proposition 8. By (7), (8), and (10) Eq. (9) is equivalent to 

gl(V,,S,Oj> = --Ei2(K(t VOj)), i = l,..., m, j = 1, . . . . n. 

The right-hand side is 

(11) 

- &ie’(X(t V Oj)) = -go(X(t V 19’), ei) = -g] (p(ei)t, l3j), (12) 

hence (11) is equivalent to the twistor equation (6) with S = -t. 0 
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